

ATTACHMENT A

STATEMENT OF WORK:
SGS File System
DOE National Nuclear Security Administration
& the DOD National Security Agency April 25, 2001

File Systems SOW April 25, 2001

–2–

Table of Contents

TABLE OF CONTENTS...2

1.0 OVERVIEW...4

1.1 INTRODUCTION...4

2.0 MOTIVATION ..5

2.1 THE NEED FOR IMPROVED FILE SYSTEMS..5
2.2 I/O CHARACTERIZATION OF IMPORTANT APPLICATIONS...6
2.3 CURRENT AND PROJECTED ENVIRONMENTS AT LLNL, LANL, SANDIA, AND THE NSA.............................6
2.4 SUMMARY OF FIVE TECHNOLOGY CATEGORIES..9

3.0 MINIMUM REQUIREMENTS (GO/NO-GO CRITERIA) ...12

3.1 POSIX-LIKE INTERFACE [MANDATORY] ..12
3.2 INTEGRATION COMPATIBILITY [MANDATORY]...12
3.3 NO SINGLE POINT OF FAILURE [MANDATORY] ...12

4.0 DESIRED PERFORMANCE FEATURES (THE 5 TECHNOLOGY TARGETS)...............................13

4.1 GLOBAL ACCESS...13
4.1.1 Global Scalable Name Space [EXTREMELY DESIRED] ...13
4.1.2 Client software [EXTREMELY DESIRED] ..14
4.1.3 Exportable interfaces and protocols [EXTREMELY DESIRED] ...14
4.1.4 Coexistence with other file systems [EXTREMELY DESIRED] ...14
4.1.5 Transparent global capabilities [EXTREMELY DESIRED to DESIRED (see table 3)]..................15
4.1.6 Integration in a SAN environment [EXTREMELY DESIRED] ...16

4.2 SCALABLE INFRASTRUCTURE FOR CLUSTERS AND THE ENTERPRISE...16
4.2.1 Parallel I/O Bandwidth [EXTREMELY DESIRED] ...16
4.2.2 Support for very large file systems [EXTREMELY DESIRED] ...18
4.2.3 Scalable file creation & Metadata Operations [EXTREMELY DESIRED]....................................19
4.2.4 Archive Driven Performance [EXTREMELY DESIRED] ...21
4.2.5 Adaptive Prefetching (Desired)..21

4.3 INTEGRATED INFRASTRUCTURE FOR WAN ACCESS..21
4.3.1 WAN Access To Files [HIGHLY DESIRED]..21
4.3.2 Global Identities [HIGHLY DESIRED] ..22
4.3.3 WAN Security Integration [HIGHLY DESIRED]..22

4.4 SCALABLE MANAGEMENT & OPERATIONAL FACILITIES..22
4.4.1 Need to minimize human management effort [EXTREMELY DESIRED]...23
4.4.2 Integration with other Management Tools [HIGHLY DESIRED] ...23
4.4.3 Dynamic tuning & reconfiguration [EXTREMELY DESIRED] ..24
4.4.4 Diagnostic reporting [EXTREMELY DESIRED]...24
4.4.5 Support for configuration management [EXTREMELY DESIRED]...24
4.4.6 Problem determination GUI [DESIRED]...24
4.4.7 User statistics reporting [EXTREMELY DESIRED] ..25
4.4.8 Security management [EXTREMELY DESIRED] ...25
4.4.9 Improved Characterization and Retrieval of Files [DESIRED] ...25
4.4.10 Full documentation [EXTREMELY DESIRED]..25
4.4.11 Fault Tolerance, Reliability, Availability, Serviceability (RAS) [EXTREMELY DESIRED]25
4.4.12 Integration with Tertiary Storage [EXTREMELY DESIRED]..26
4.4.13 Standard POSIX and MPI-IO [EXTREMELY DESIRED] ...27
4.4.14 Special API semantics for increased performance [HIGHLY DESIRED]27
4.4.15 Time to build a file system [EXTREMELY DESIRED] ...28
4.4.16 Backup/Recovery [EXTREMELY DESIRED] ..28

File Systems SOW April 25, 2001

–3–

4.4.17 Snapshot Capability [HIGHLY DESIRED -> EXTREMELY DESIRED]...28
4.4.18 Flow Control & Quality of I/O Service [HIGHLY DESIRED] ...29
4.4.19 Benchmarks [EXTREMELY DESIRED]...29

4.5 SECURITY..29
4.5.1 Authentication [EXTREMELY DESIRED]...29
4.5.2 Authorization - [EXTREMELY DESIRED] ..30
4.5.3 Content-based Authorization - [HIGHLY DESIRED] ..30
4.5.4 Logging and auditing [EXTREMELY DESIRED]..31
4.5.5 Encryption [DESIRED] ...31
4. 5.6 Deciding what can be trusted [EXTREMELY DESIRED]...31

REFERENCES...32

GLOSSARY ..33

File Systems SOW April 25, 2001

–4–

1.0 Overview

1.1 Introduction

This document is a Statement of Work for developing new high performance computer file
system technology. The solicitation, which is managed from a government program called
PathForward, anticipates funding several companies to accelerate research and
development of potential commercial products. Companies with an interest in furthering
the capabilities of high performance computer file systems are encouraged to seek funding
in the manner described in this document. The document is composed of four sections:
first, it begins with an introduction to PathForward; second, it describes our motivation for
the solicitation; third, it provides a description of minimum requirements; and fourth, it
provides a description of the specific desired technological components.

The goal of this File System PathForward effort is to accelerate file system development
activities in five key areas, and to bring these critical technologies or technology
enhancements to the marketplace more quickly than they might normally appear:

? Global Access

? Scalable Infrastructure for Clusters and Enterprise

? Integrated Infrastructure for Wan Access

? Scalable Management & Operational Facilities

? Security.

Promising global file system product development projects that could benefit from
additional development funded by the U.S. Department of Energy Accelerated Strategic
Computing Initiative (ASCI) and other high performance computing initiatives within other
agencies of the U.S. Government will be considered for funding.

The required file system may be characterized as secure, extremely scalable and able to
support complex multiple supercomputer sites. It is likely that most global file system
development projects have not considered all the ramifications of such an environment, and
it is hoped that one or more of these projects would desire to work with the File System
PathForward project to add scalability and security capability to help the product in
question to scale to enormous proportions in a secure and manageable way. For an example
of the PathForward process, please see the computer interconnect technologies
PathForward webpage http://www.asci.doe.gov/scs/path.htm

File Systems SOW April 25, 2001

–5–

2.0 Motivation

2.1 The Need For Improved File Systems

Every year, the DOE meets to discuss barriers that are reducing the Defense Programs (DP)
Laboratories’ computational capabilities to perform their mission. According to the most
recent meeting, the most critical computer science barriers faced by ASCI are I/O related.
In fact, the top two barriers, and three of the top five barriers, recognized at Curves and
Barriers 2000 are file system related: (1) Data access for visualization; (2) End-to-End I/O
throughput between the platforms, visualization, and storage; and (5) Distributed File
System deployment.

The DP Laboratories have a roadmap for future file systems and their required attributes.
One defining characteristic of these file systems is that even though the data and metadata
are available to a variety of machines (i.e., compute engines, visualization engines, archival
systems, personal desktop computers), the bandwidth-limiting bottlenecks found in today’s
shared file systems are eliminated. Common problems of today such as the CPU-intensive
nature of protocol stacks, serialization resulting from non-parallel metadata, and/or data
servers are removed to permit the tremendous scalability requirements of ASCI.

According to the strategy, the file system should be independent of machine makes
(Compaq, Cray, HP, IBM, SGI, Sun, …); operating systems (AIX, HPUX, Irix, Linux,
Solaris, Tru64, Unicos…); and storage device makes (Ciprico, EMC, IBM, Quantum,
Seagate, …). This “best of breed” independence will extend the file system life by allowing
supercomputer centers to exploit new technologies while retaining old spindles/devices.
Classically most ASCI compute platform procurements have included the purchase of both
a platform and an integrated file system for that platform. The ASCI sites have stated a
desire to separate the file system component of the next ASCI platform from the rest of the
RFP. This file system independence opens the door to a much broader number of computer
vendors and architectures.

File sharing will be key to the success of Sandia’s machine delivery in 2003 and all
machines that follow it. As file system capacities and investments continue to soar, we can
ill afford to continue to rely on separate file systems for each compute engine, each
visualization/analysis engine, and each archival storage cache. There is a clear need for a
single shared file system ala NFS, but with parallel performance and ASCI-sized
scalability.

Finally, future file systems should provide a minimal set of security capabilities. Since a
shared network storage device grants access to file system blocks (or objects) via a remote
request over some network, it is imperative that adequate measures ensure all unauthorized
accesses (write, read, create, delete) are disallowed. This is especially true when the desire
is to share the file system across multiple administrative domains such as LLNL, LANL,
Sandia, and DOE headquarters. The tension between providing convenient file sharing and
proper security makes for quite a challenging problem.

File Systems SOW April 25, 2001

–6–

2.2 I/O Characterization of Important Applications

I/O intensive jobs at the DP Laboratories fall into 3 basic categories:

Application Type Description
Simulation Type-1 Very little reads. Very write intensive. Typically submitted to the

biggest machines (hundreds to thousands of SMP nodes). One
new file is created about every 30 minutes; each new file is write
shared by multiple nodes. Each new file has extensive write
activity resulting in a large size (multiple terabytes -- approaching
25% of the cumulative memory of the cluster). Sequential &
random write access for each node, writes typically > 1KBytes.
Most codes are MPI based message-passing, but OpenMP style
and hybrid style applications exist. Furthermore, some codes use
an uncoordinated (embarrassingly parallel) approach.

Simulation Type-2 Very little reads. Very write intensive. Typically submitted to the
biggest machines (hundreds to thousands of SMP nodes). File
create performance is very important. One new file create for
each processor about every 30 minutes, each file may be
exclusive to its originating node. Each new file has extensive
write activity resulting in a large size (multiple gigabytes –
cumulatively approaching 25% of the cumulative memory of the
cluster). Sequential & random write access for each file, writes
typically > 1KBytes. Most codes are MPI based message-passing,
but OpenMP style and hybrid style applications exist.
Furthermore, some codes use an uncoordinated (embarrassingly
parallel) approach.

Post Analysis Very little writes. Very read intensive. Typically submitted on
small clusters (32-128 SMP nodes). Data often represents values
(pressure, temperature) within a 3-D mesh. The 3-D mesh is not
static, but rather is adaptive (e.g., you need to access pointers to
see where in the file a given mesh-point will be in the next time-
step). Analysis relies heavily on tricks to speed up disk access for
iso-planes or iso-contours (normally random access, difficult to
predict – attempts are made to improve locality of data). Most
codes are MPI based message-passing, but OpenMP style codes
exist.

Table 1

2.3 Current and Projected Environments at LLNL, LANL, Sandia, and the NSA

Currently each ASCI site consists of many different types of computational platforms, each
with its own high performance tightly integrated file system. Additionally there are
medium to low performance NFS/DFS/CIFS type services for small file sharing. This
environment requires multiple copies of files moved using custom parallel tools. Figure 1
is a generic depiction of this current environment.

File Systems SOW April 25, 2001

–7–

Example of Current Single Site File System Situation

Sy stem
Area
Network

NFS/CIFS
Clients

NFS,CIFS
Servers

Storage
Area
Network

Cluster A

Vis ualization

WAN

LAN

...

...
Clus ter A File System

..

.
Tape
System

To
Other
Sites

Cluster B
...

System
Area
Network

Cluser B File Systems

Backup/Archive
System

Figure 1: Current Site Environment

Figure 2 below shows an example of how one ASCI site (LLNL) looks currently.

4x

6x

4x 2 TB vis
Disk cache

70 MB/s

64 MB/s
140-800 MB/s

Data Visualization Corridor

FY01 I/O Plan

FY01 DVC Plan

I/O speeds determined
by ASCI Apps Milestone

requirements in FY00

FY01 Platform Plan
12.3TF to GA by October

3x1.3TF = 3.9TF

1

2

3

12x

280 MB/s

96 MB/s

200 MB/s

TB3 (150 MB/s)
Gb ENet (125 MB/s)
HIPPI (100 MB/s)

Switch

A Typical Supercomputer Center (2001)

Figure 2: Current LLNL Computation Environment

File Systems SOW April 25, 2001

–8–

Figure 3 below represents a possible SGS File System architecture for an ASCI site. Note that the
multitudes of file systems are replaced by one global file system. This is only one example of an
architecture for a site that utilizes a Storage Area Networked approach to provide the file system
connectivity. This is not meant to imply that this is the only solution that would be considered, but
it does illustrate the desire to move towards a common file system between platforms and sites.

Possible SGS File System Architecture for Single Site
System
Area
Netwo rk

NFS/CIFS
Clients

NFS ,CIFS
gateway

Storage
Area
Network

Clus ter B

Cluste r A

V isualization

GPFS

WAN

LAN

Ta pe
System

.

...

.

i

SGS File System Servers

Backup/A rchive Agent

System
A rea
Network

..

.

To
Other
S ites

Figure 3: Possible generic architecture for SGS File System at a Site

Figure 4 below is a specific example of an envisioned Site architecture at LLNL in the 2004 time
frame. Notice the SAN attached disk providing a file system infrastructure for an SGS File System
for the entire site.

SAN Model for Site Wide Global File System

System Data and Control NetworksSystem Data and Control NetworksSystem Data and Control Networks

Compute
Node …

Purple
FS

…
NFS
Login

Login
Net

NFS
Login

Login
Net

System Data and Control Networks

Purple
FS

…

Net Net…

Compute
Node

Archive

Vis Cluster

Capacity Compute Farms

…

Infiniband™ I/O Network

…

Capability
Platform

Studio
Displays

Infiniband™ I/O Network

Supercomputer Center As Envisioned In The Near Future (2004)

Figure 4: Proposed LLNL Computation Environment for 2004

File Systems SOW April 25, 2001

–9–

The above figures are site centric views, but it is important to note that the proposed SGS
should logically span multiple sites.

2.4 Summary of Five Technology Categories

The core areas that an ASCI SGS File System should address are: global access, scalable
infrastructure, integrated wide are network (WAN) support, scalable administration
capabilities, and security. Since this effort is targeted at development or enhancement of a
commercial product, ASCI has an interest in how a file system design impacts the range of
platforms supported.

Separately and alone, these component technologies are of little use to us. The target file
system should fully integrate the functionality of each of these five categories.

At present, commercially available file systems present many challenges to the ASCI
mission. The following itemizes file systems focus areas into five categories.

• Global Access

Ideally we would be able to provide a single uniform name space across all
machines which wish to mount the file system. Additionally, the global
name space should allow for local site autonomy while still providing
global consistency.

A second key aspect of global access is “how pervasive is the technology”
(i.e., which platforms are supported). Our heterogeneous environment
establishes a need for a widely available solution. One hurdle to wide-scale
heterogeneous support is the intrinsic complexity of today’s file systems; if
the solution is too complex or monolithic, some machines will likely not be
supported. A second hurdle to wide-scale heterogeneous support involves
the kernel intensive nature of file systems; this fact makes it extremely
difficult for parties that don’t own the operating systems of clients or peers
to keep up with new kernel releases. Third party file systems from vendors
that don’t own the operating systems usually suffer from two problems: (1)
they, typically, can only support a subset of the popular operating systems;
and (2) within the subset of operating systems supported, these third party
file system solutions typically lag in support of new operating system
releases by one or multiple versions. NFS and CIFS were able to overcome
these obstacles primarily because the vendors of client or peering operating
systems provide the file system software themselves. These support issues
are a very important part of our strategy for choosing file system
technologies.

File Systems SOW April 25, 2001

–10–

• Scalable Infrastructure for Clusters and the Enterprise

We need our compute engines to be able to share one common, high-
performance file system with each other and with associated machines,
such as visualization engines. Parallel applications on our simulation
platforms simply cannot write and read from simple NFS servers, as the
performance provided by these systems or other network based file systems
is several orders of magnitude lower than we require.

Additionally, these systems do not scale to ASCI-sized machines, with their
thousands of nodes. Furthermore, we do not have the desire, or disk
capacity, to duplicate our simulation platform file space on our
visualization engines. Current solutions require us to invent customized
high performance parallel copy software to move data between these
systems and to spend considerable money on enormous, overly
complicated, external networks and infrastructure between the various
platforms in order to enable performance. Moreover, the storage networks
are duplicated in order to provide local high-speed performance and
capacities for the large data sets.

• Integrated Infrastructure for WAN

Many aspects of ASCI depend on the successful deployment of one
capability machine, which can be accessed from all three labs. This
requires significant WAN user management infrastructure, which simply
does not exist today. For example, we require a mechanism that provides a
global mapping of the various distributed entities to local entities. That is, a
Sandia person may have different usernames, uids, gids, and privileges
among machines that they access at Sandia, LANL and LLNL.
Alternatively, file system technologies can be designed to operate within a
global context where resources and entities are globally unique and each
user has a single identity. That is, a Sandia person has a unique identity,
group memberships and privileges that are recognized among the different
machines and services at Sandia, LANL and LLNL. Currently, DFS is
utilized to provide a WAN based file system capability. However, the
support for DFS clients and DFS performance, both local and remote, are
not sufficient to solve our data sharing needs.

• Scalable Administration

System administration for I/O subsystems should remain straightforward and
require few new skills from release to release. Storage management should
not need to scale linearly with the number of I/O devices, and attached hosts.
Furthermore, the daunting learning curve of today’s file systems is
problematic--we need to be able to use junior system administrators for
everyday file system maintenance. The specialized knowledge to manage
systems like the current parallel file systems used in our simulation platforms
is so involved that we have very few people with enough knowledge to do

File Systems SOW April 25, 2001

–11–

most troubleshooting and adjustments. Current parallel file systems simply
require too much time and effort to keep up and provide performance only to
directly attached and highly integrated hosts. Additionally, scalable
management should provide for site-specific actions as well as global
operations, much like the DFS system provides today. Finally, file systems
could provide useful tools that can be used to dynamically determine the
bottlenecks throttling an application’s I/O.

• Security

We need adequate mechanisms to enforce need-to-know directives. Future
file systems should provide a minimal set of security capabilities. Since a
shared network storage device grants access to file system blocks (or objects)
via a remote request over some network, it is imperative that adequate
measures ensure that all unauthorized accesses (write, read, create, delete)
are disallowed. This is especially true when the desire is to share the file
system across multiple administrative domains such as LLNL, LANL,
Sandia, and DOE headquarters. Access Control Lists (ACLs) are a start, but
they do not provide the whole solution and there are different, incompatible
versions of ACLs. The tension between providing convenient file sharing and
proper security makes for quite a challenging problem. Additionally, new
scalable global file systems technologies will typically involve more
machines being attached to disk storage directly or via a storage area network
than ever before. This means that machines with general users will be
directly logged into far more systems that have a direct channel to the disk.
That increases the security risk by requiring that a far larger number of hosts
be installed, maintained, and managed so that their ability to protect data on
the media is adequate. There is also a need for advanced security capabilities
in future file systems; these capabilities include file-level auditing, data
encryption while in transit and content-based authorization. Global file
system technologies with support for multiple administrative domains make
individual security management that much more complex. While it is
technically feasible to extend file sharing using ACLs and groups to multiple
domains, there is a greater administrative burden when dealing with multiple
sets of data, sharing a subset of the data or if the group role is not aligned
across domains. Content-based authorization utilizes attribute metadata
associated with the file, the requester’s credentials and a site-defined rules-
based policy engine to make authorization decisions. The policy engine can
also be used to implement Extremely Desired access controls.

File Systems SOW April 25, 2001

–12–

3.0 Minimum Requirements (Go/No-go Criteria)
The following items are Mandatory. That is, they must be present in any proposal for that
proposal to be considered responsive (and, therefore, eligible for an award).

3.1 POSIX-like Interface [MANDATORY]

We require that any file system solution should provide a POSIX-like interface. That is, it
should comply with IEEE/ANSI 1003.x standards in terms of the functional interface
bindings between languages and the operating system (e.g., the C language bindings). This
is a lesser requirement than full POSIX functional compliance. For example, we do not
require that atime/mtime/ctime information be globally accurate for calls to stat() or fstat().
The XPG4-Unix Standard versions of mmap() and munmap() are required, but may be omitted
from initial demonstrations. (For info on XPG4-Unix, see “X/Open CAE Specification, Issue 4,
1994.”)

3.2 Integration Compatibility [MANDATORY]

We require that the SGS File System is able to address all five technology targets described
in Section 4.0. For any proposal that does not address all five technology targets (which is
allowed), the proposed technology must not prohibit the integration with other technology
to achieve the remaining technology targets.

3.3 No Single Point Of Failure [MANDATORY]

We require that the SGS File System be designed in such a way that it is always possible to
remove a single point of failure by adding the appropriate hardware. That is, the software
architecture must be designed to recover and continue operation after the failure of any
single hardware component (given a corresponding hardware backup component).

File Systems SOW April 25, 2001

–13–

4.0 Desired Performance Features (The 5 Technology Targets)
There are a number of file system technologies that need to be provided and possibly
significantly improved if the high performance computing sector of U.S. Government
agencies are to carry out their defined mission for the next few years. We have divided
these critical desired technologies into five areas: Global Access, Scalable Infrastructures for
Clusters and the Enterprise, Integrated Infrastructures for WAN Access, Scalable
Management & Operational Facilities, and Security. Additionally, issues like RAS
(reliability, availability, and serviceability), standards based API, and archive integration
along with development philosophy and documentation are all vital to the success of this
endeavor. In the following sections of this document, desired features of the needed file
system will be addressed. It is expected that a proposal would attempt to address one, many,
or all of these issues.

Separately and alone, these five component technologies (4.1 through 4.5) are of little use
to us. The target SGS File System should fully integrate the functionality of each of these
five categories.

Each item is prioritized into one of three categories: Extremely Desired (those items that are
most desired); Highly Desired (those items that, while very desirable, are not quite as
important as Extremely Desired); and Desired.

4.1 Global Access

We have a need for file systems that are heterogeneous and global. There are several
aspects associated with being a Global File System in our view, including global name
space, heterogeneous direct access, and ability to export via a common network file
system protocol like NFS or CIFS. The following subsections of this document describe
the required and desired features in the Global File System area.

4.1.1 Global Scalable Name Space [EXTREMELY DESIRED]
The name space of the file system should be global. Global means that it is possible to
construct a view of the distributed file system hierarchical name space that is identical
simultaneously at multiple participating sites and clients. In other words, subject to a
site’s administrative constraints, it should be possible to provide seamless name space
translation to another participating site’s name space. Further, at least one fully
qualified path name to any file or directory object should be identical from any client
anywhere without requiring the user to know the actual location of the data or metadata.

The requirement for a global name space is not intended to imply any requirement for
the localization of file metadata or data. The intention is to allow participating Scalable,
Global, Secure (SGS) File System sites to offer a name space that is organizationally
consistent, though it may be a construction of many geographically remote instances,
each under separate administrative control.

The name space shall be usable by any application conforming to the POSIX standard.

File Systems SOW April 25, 2001

–14–

4.1.2 Client software [EXTREMELY DESIRED]
There will be portable, open SGS File System client software available for all major
platform operating system environments in the government high performance
computing environment for direct access of the file system. Access to the file system
should be heterogeneous. The heterogeneous environment is made up of Linux (Intel
and Alpha), Tru64, AIX, IRIX, Solaris, HP-UX, and Windows/NT/2000 operating
systems. Within each of these operating system environments, many levels of the
operating system, including older versions and extremely new (even beta) releases of
operating systems co-exist. Unlike many classical business environments, where
lagging operating system version support for software is not a penalty due to the need
for extreme stability, in the high performance computing environment, frequently very
young OS levels are required for scalability features and other extreme environmental
support features. Given this large set of OS support required, we expect a palatable
story on how OS support for the global file system client will be a factor (e.g., consortia
of OS vendors, sample client code with public source, full open client protocols).
Attractive strategies such as open source, open protocol specifications, and reference
implementations (e.g., an open source client for Linux) are extremely desired.

4.1.3 Exportable interfaces and protocols [EXTREMELY DESIRED]
The file system should be exportable via NFS and CIFS to provide coherent access to
non-major supercomputing platforms.

Any proposed SGS File System design should be able to participate as one piece of the
supercomputing and site infrastructure. Standard supported protocols should be offered
to allow data to be easily shared with other compute resources. After all, the data most
likely will need to be accessed by nodes other than those which produced the data
during such activities as archival, post-processing and visualization.

Additionally, it is probably not the case that support for the new file system will appear
in all machines and operating systems at once. Using legacy protocols allows the risk of
delays between different operating system implementations to be somewhat mitigated.

For the reasons stated, the ability to export name space and file objects to NFS V4 is
Extremely Desired. The ability to export name space and file objects to Microsoft file
sharing is Desired.

Finally, flexibility in transport communications is Highly Desired. That is, we highly
desire a proposal which is transport agnostic (able to utilize which ever transport the
HPC marketplace accepts).

4.1.4 Coexistence with other file systems [EXTREMELY DESIRED]
It is also a requirement that any SGS File System client be capable of co-existence with
other file systems on the client system. In other words, the use of the SGS File System
on a particular node should not preclude that node’s use of other file systems in a native
fashion.

File Systems SOW April 25, 2001

–15–

4.1.5 Transparent global capabilities [EXTREMELY DESIRED to DESIRED (see table 3)]
Current and future government supercomputing machines have a distance-computing
requirement as well. They are intended to be able to cooperate over large geographical
distances. For that reason, the file system architecture should not hinder an
implementation that must leverage long-haul network links. Two such geographically
separated machines should potentially be able to access storage resources on both,
through the same API and namespace, as well as with equivalent mechanisms. From
the perspective of the compute process, transparency with scalable, parallel movement
of data should be limited, again, only by communication links and other hardware. Any
implementation should attempt to support this requirement.

Meta-data and data movement protocols should not be implemented in such a way that
distance induced latency make full utilization of high bandwidth interconnects over long
distances inefficient. This may be an issue for command/response protocols to remote
storage. It also may be an issue for buffer size matching of devices to local networks to
wide area networks simultaneously attached to local and wide area networks.

Note that these requirements do not necessarily dictate a “globus-like” approach. Any
architecture which can provide parallel access to remote files through standard POSIX
interfaces is sufficient.

Files available to one processor should be accessible to all processors on the system
without special knowledge by the users and independent of the number or ordering of
SMPs or of individual processors. As well as read/write access, all the usual file
operations such as open, remove, list, etc. need to be provided. All computing nodes
within the same computing complex shall be able to access the same file system as well
as all remote compute nodes within the “virtual complex,” subject to local site policies.
For the time being, we’ll define remote computing nodes as those nodes outside of the
traditional computing complex but now an integral part of a “virtual complex” -- a
possibly heterogeneous cluster connected together with ultra-high bandwidth
networking technology. At some point we would like to have “computing complex”
expanded to include heterogeneous machines with ordinary high-end networking
connections. Table 3 indicates the priority of needed local/distributed capabilities.

Remote Access Capabilities

Range

Mixed
Arch?

Number of
Compute

nodes

Distance

Importance
(Extremely Desired, Highly desired,

Desired)

 (1000s) (miles) 2003 2004 2005
Machine-wide homo 10 or less < 1 ExDe ExDe ExDe
Site-wide homo 10 - 100 1 - 10 ExDe ExDe ExDe
Site-wide hetero 10 - 100 1 - 10 ExDe ExDe ExDe
DP Complex homo 100 - 1000 3000 HiDe HiDe HiDe
DP Complex hetero 100 - 1000 3000 HiDe HiDe HiDe

Table 3

File Systems SOW April 25, 2001

–16–

4.1.6 Integration in a SAN environment [EXTREMELY DESIRED]
Any SGS File System effort should be able to exploit, in a flexible and extensible
manner, the System Area Networks that will be an integral part of high performance
computing sites. For instance, employing things like ST, VIA or other OS bypass
mechanisms should be considered. However, the choices should not be limiting in
nature. The server software and client SGS File System implementations should be able
to make use of transports not yet developed and, potentially, only available at a
particular site. This may be done through a middle-ware communications layer,
pluggable modules or standard, transport independent interfaces, for instance.

4.2 Scalable Infrastructure for Clusters and the Enterprise

It is expected that many of the global file system projects considered in the PathForward
activity will not have the extreme scalability in both data and meta-data operations in
mind. As the disparity between processor speeds and I/O interfaces increases, the need to
scale activities via parallel access to multiple devices becomes more critical. We require
that the SGS File System scale in performance with available local and distributed
resources, such as network bandwidth, storage resources etc. Quantities that should scale
include name space size (above), storage units, clients, servers, bandwidth, number of
files, file metadata activity, total file system capacity, and data set size (see Sections
below).

4.2.1 Parallel I/O Bandwidth [EXTREMELY DESIRED]
Probably most important for scalability of I/O bandwidth, data should be able to move
between multiple media sources and sinks in parallel. Transfers between multiple
clients and multiple independent file objects should be able to proceed in a fashion that
minimizes mutual interference [that is high throughput for independent, concurrent file
accesses]. As well, transfers to a single file from multiple processes should have
minimum interference in a similar fashion (i.e., maximum throughput with concurrent
access from multiple processes to the same file). Ideally, benchmarks of the aggregate
throughput to multiple files by independent processes should demonstrate linear
scalability up to the limit imposed by the underlying system software and hardware.
Similarly, coordinated access to a single file by multiple processes should be able to
demonstrate linear scalability when access is made to non-overlapping allocation units.
Furthermore, support for parallel transfers should support environments where there are
one or more file system clients per “SMP compute platform” or on cooperating multiple
SMPs.

There should be a facility to allow for N to M mapping of parallel files, so that a file
stored with parallel geometry N can be read by a process(es) with parallel geometry M.
For instance, a file written in column order should be able to be later read in row order.
It is understood that some performance penalty may be incurred in a case such as this.

At times, it may be necessary to devote every processor in an ASCI machine to one
large application. We require the I/O bandwidth to scale as specified in Figure 5. We
assume an appropriate underlying infrastructure and configuration of the contemplated
SGS File System. Specifically, we require that: (1) the aggregate I/O rate for large
sequential POSIX accesses should fall along the violet and green lines of Figure 5 for

File Systems SOW April 25, 2001

–17–

any given number of clients in a parallel application; (2) the aggregate I/O rate for
large MPI-IO accesses (accesses of 256K and over) should fall along the violet and
green lines of Figure 5 for any given number of clients in a parallel application; (3) the
aggregate I/O rate for random 1K MPI-IO accesses should be at least 10% of the large
MPI-IO rate for the same number of clients. In all instances, the I/O bandwidth
designated by the green line, also called the File System Maximum Sustained
Bandwidth, is to be obtained by the following formula:

BFS = N* Bdrives *E

Where

BFS = File System Max Sustained Bandwidth

N = total number of disk drives

Bdrives = sustained bandwidth of the slowest disk

E = file system efficiency factor (.85)

of clients writing (or reading) ?

?
Bandwidth
(GB/sec)

{ performance of
 1 client

1 n

{ peak performance of
 file system reached
 at “n” clients

Linear region: when total
capacity of clients is less
than peak performance of
file system.

Ceiling region: when total
capacity of clients is equal
to or more than peak perf.
of file system.

Figure 5

File Systems SOW April 25, 2001

–18–

We project a need for I/O rates listed in the bottom row of Table 4. We assume
thousands of tasks writing Gigabytes. I/O rates will need to track floating-point
performance and aggregate memory. The lower estimates of memory shown in Table 4
assume that an n teraflops machine will require n3/4 TB of memory (this relationship has
been suggested by recent work on petaflops architectures); the higher sizes assume n
Teraflops will require 2/3n Terabytes. The lower I/O rate estimates are based on the
throughput needed to store one half of the smaller memory in five minutes; the higher
I/O rates assume that applications will store one byte for every 500 floating point
operations, a common rule of thumb.

Aggregate Bandwidth Rates for One Parallel Job
Simulation & Physics Model Aggregate FS Requirements

 1999 2002 2005 2008

Teraflops 3.9 30 100 400
Memory Size (TB) 2.6 13-20 32-67 44-167
I/O Rates (GB/s) 4 – 8 20-60 50-200 80-500

Table 4

Two application I/O mode performances are described in the table. It is valid either
when one large parallel application is reading or writing to multiple files or when there
is only a single file involved. Usually this will be one file per process, but it may also
be one file per node. Each file may be 1 GB or more, with each task (or node) serially
writing. In short, the number of files involved in any given application’s set should not
significantly alter the performance curve.

Like parallel performance, single-node performance is very important and should have
a minimum of file system overhead. The file system needs to be able to provide 95% of
the maximum sustained bandwidth achievable (when appropriately configured to
eliminate network contention) by the client OS transferring data through the client’s
access network to the available storage devices, bypassing the client file cache.

4.2.2 Support for very large file systems [EXTREMELY DESIRED]

As Table 5 indicates, ASCI requires petabyte-range file systems in the near future. It is
required that there be no practical limit on individual file size [e.g. 2**64 byte file
sizes]. The name space should be able to manage a million or more directories
(possibly containing 10**4 – 10**6 files each).

File Systems SOW April 25, 2001

–19–

File System Capacities

 1999 2002 2005 2008

Teraflops 3.9 30 100 400
Memory size (TB) 2.6 13-20 32-67 44-167

File system size (TB) 75 200 - 600 500 -2,000 3,000 –
20,000

Number of Client Tasks
[see RATIONALE point (1)]

6144
to

8192

8192
to

 16384

8192
to

 32768

8192
to

65536
Number of Users 1,000 3,000 3,500 3,500

Number of Directories
[see RATIONALE point (2)]

5.0*10^6

1.5*10^7

1.8*10^7

1.8*10^7

Number of devices/subsystem
[see RATIONALE point (3)]

5000

(18GB
drives)

3250 – 10000

(72GB drives)

2084 - 8375

(300GB
drives)

1,350 –
8750

(1200 GB
drives)

Number of Files
[see RATIONALE point (4)]

7.5*10^7
to

1.0*10^9

3.75*10^8
to

4.0*10^9

4.5*10^8
to

1.0*10^10

4.5*10^8
to

1.0*10^10

Table 5

RATIONALE: (1) These numbers are based on the # of procs; (2) Most files at
supercomputer sites are not the large output of parallel simulations – rather, the
majority of files are email and other small files found in user’s home directories. At one
high performance computing site, today’s statistics show ~1000 dirs per user for home
directories and ~8 dirs per user for heavy parallel output. Assume ~5,000 dirs per user
will be sufficient for SGS File System; (3) Number of devices should scale with disk
density & capacity. Assume disk density increases about doubles every 18 months. All
device counts assume the form factor remains 3.5” drives; [Hen94] (4) Today’s
statistics show ~21.4 files per directory on home directories and around 44 files per
directory for parallel output (max observed is 2,000,000 files per directory). For the
SGS File System low bound: assume 25 files per directory overall; for the SGS File
System high bound: assume a few directories will need a 10 million files.

4.2.3 Scalable file creation & Metadata Operations [EXTREMELY DESIRED]
File create performance is another important factor for whole-machine jobs. Concurrent
file creation should scale as specified in the performance scaling table.

File Systems SOW April 25, 2001

–20–

File Create Performance –versus- Number of Nodes
One parallel program creating multiple files (one per node) into a single directory.

N = total number of processors in machine
R=File create rate for one processor

 1/4th

machine
1/2th

machine
3/4th

machine
Full

machine
Aggregate File Create Rate .20*N*R .40*N*R .60*N*R .75*N*R

Table 6

Again, we assume an appropriately configured SGS File System and infrastructure as
well as proper name space domain decomposition of the benchmark.

Assuming that the machine is a balanced configuration able to achieve the bandwidth
numbers specified above, the file system should be able to untar a single source-tree of
randomly sized files at the files-per-second rates specified in Table 7. 1

File Create Rates
Untarring random size files from 100 bytes to 16K with an average of 5000 files per

directory.

 (Assume Q=5000 and R=2000)

Priority 1999
(files/sec)

2002
(files/sec)

2005
(files/sec)

2008
(files/sec)

Highly Desirable 200 Q 3*Q 9*Q
Extremely Desired 200 R 3*R 9*R

Table 7

Metadata intensive operations should not be significantly slower than local file systems
and/or NFS. For example, the following activities should complete in less than one
second:

• ‘ls’ on an active directory. That is, calls to readdir(), lstat() should complete
quickly in the presence of directory additions and/or deletions.

• ‘rm’ on very large files (assumes removal from the directory structure, with file
space reclamation in the background) That is, calls to unlink() and rmdir() should
complete quickly when performed on directories containing many thousands of
entries. We desire removal of files from the directory structure at a rate of at least
.75 the creation rate for the given time period.

• ‘mkdir’ on an active file system That is, calls to mkdir() should complete quickly
in the presence of other, simultaneous, directory additions and/or deletions.

1 Untarring a file is meant to measure metadata file-create performance.

File Systems SOW April 25, 2001

–21–

We recognize the difficulty of accurately maintaining metadata information in a
distributed SGS File System. We realize that in a large, highly distributed file system, it
may be a very expensive proposition to deliver metadata information to a parallel
application that is globally consistent and accurate. For that reason, we can allow the
file system to make a best effort attempt to deliver metadata information without
guaranteeing complete accuracy or coherency. It would be useful if the file system
could guarantee that the inaccuracy be bounded in time. For instance, a tunable
parameter could be provided that specifies that the metadata supplied to the application
is not more than some number of seconds out of date.

However, there are times when accuracy and coherency are paramount. For instance, an
application or utility requesting an access control list may need to be assured that some
immediately prior change has been propagated to all hosts with access to the file
system. For that reason, the file system should be able to supply a globally consistent
and accurate picture of the requested metadata when prompted. This may be through a
different call than the default, or with some qualifier. However it is implemented, it
should be available.

4.2.4 Archive Driven Performance [EXTREMELY DESIRED]
We envision HSM products that are scalable such as a parallel HSM data mover. While
the design and/or interface to such HSM products is beyond the scope of this RFP, we
encourage any helpful support along those lines. The SGS File System is expected to
provide much higher bandwidth than the archive system. Therefore, the bottleneck for
any transfer between the SGS File System and the archive (disk-cache or direct to tape)
should be the archive.

4.2.5 Adaptive Prefetching (Desired)
If an implementation utilizes prefetch and write-behind, we desire a method to disable
it. For instance, it is normally desirable for a file system’s prefetch heuristics to infer
access patterns from reading in common 2-dimensional and 3-dimensional array
patterns that enable it to optimize media accesses and, significantly, boost performance.
This is typically done through making use of the “file view” established within an MPI-
IO context. While this is, generally, a highly desired feature of the product, we
recognize that possible uses of the file system may cause problems. For these,
problematic, cases we would like the application to have the ability to disable
prefetching in order to allow tighter control over media accesses and alternative,
application implemented, strategies.

4.3 Integrated Infrastructure for WAN Access

4.3.1 WAN Access To Files [HIGHLY DESIRED]
Inter-site cooperation and collaboration are common activities at the national laboratories
and other government agencies. We desire that the file system support a common global
name space mountable by remote clients. Using tools like ftp, users can access data on

File Systems SOW April 25, 2001

–22–

remote resources but this generally results in the creation of a local copy. This becomes a
maintenance nightmare. Moreover, it is extremely difficult to maintain the proper
authorization controls for multiple copies of the same data or even a single copy of the
data if the local site’s authorization controls are not able to inter-operate with a remote
site’s security infrastructure.

In addition, we desire high bandwidth access for large file usage. When a remote site is
reading or writing a large file, and multiple connections exist between the two sites, the
file system should be able to exploit the multiple paths by providing transparent
parallelism.

A common technique for dealing with the large latencies imposed by geographical
distances is to replicate the file in different locations. While this technique introduces a
host of possible problems including synchronization of changes and reduced utilization of
available disk space, it can help solve latency and bandwidth limitations. Our desired
requirements in this regard should not be taken to mean a grid file system. Rather, we
desire a file system which addresses WAN latency and bandwidth limitations without
requiring intervention by the user to oversee edit synchronizations.

4.3.2 Global Identities [HIGHLY DESIRED]
We should connect remote super computing sites into one large inter-site collective. Our
environment and mission dictates that we cannot exist as a single administrative domain.
Each local site has different administrative policies, different people who have privileges
to make local modifications, and possibly different local names for the same user or
object. Furthermore, using the “inter-site” should be intuitive.

Resources at each super computing site, in addition to operating and being managed as
autonomous units, should inter-operate between sites and support remote access within
several contexts. These include the need for uniform naming, seamless access with
minimal differentiation between local and remote resources, authorization controls to
uniquely and properly grant privilege to locally and remotely authenticated entities, wide
platform availability and the need for strong and sustained industry support.

4.3.3 WAN Security Integration [HIGHLY DESIRED]
WAN environments place special challenges on security infrastructures. We desire a
seamless file system infrastructure that provides the necessary flexibility for individual
site administration without precluding inter-site secure operation.

4.4 Scalable Management & Operational Facilities

It is very desirable that the management of a very scalable global file system is scalable
as well. In other words, it is important that management overhead of a global file system
not increase linearly as the size of the file system grows; this includes meta-data growth,
data movement bandwidth growth, and total storage capacity growth. Several studies
have concluded that the cost of data ownership is actually more expensive than the initial
hardware/software investment. The following subsections address required and desired
management related features for the SGS File System.

File Systems SOW April 25, 2001

–23–

While file system tools such as fsck, mount, mkfs, etc., are not technically part of the file
system, these tools are critical components and will heavily affect the success (or failure)
of any SGS File System. Rather than specify a reference implementation or design for
each critical tool component, the approach we have taken with this RFP is to specify the
functionality we desire. In some cases, the file system may have no notion of the desired
entity, and POSIX provides no interface to acquire the necessary information (e.g. a batch
job script, a parallel application running on multiple nodes, the collection of activities
being performed by a given user or group across multiple machines). We recognize that
file system tools are in many cases limited by Operating System (OS) support. Certainly
new OS standards and/or MIBs are beyond the scope of this RFP. However, we do hope
to encourage new modular file system tools that could easily be extended to support the
advanced operational capabilities outlined below. Therefore we specify the desired file
system tool functionality below with the recognition that new OS interfaces are required,
and we will utilize other RFPs / activities to provide the required MIBs and/or interfaces
proposed by the Offeror.

4.4.1 Need to minimize human management effort [EXTREMELY DESIRED]
High performance computing environments are large with many diverse storage
resources. Operation and management of these resources is a primary concern when
integrating any machine into the environment. Personnel considerations are such that it
is very important for a file system to take care of itself as much as possible. A system
that requires constant attention, reconfiguration or maintenance is going to be
problematic at best. As well, in a distributed file system, the number of servers involved
may need to change. When such a change is required, the clients, as well as the
remaining servers should be able to adapt, minimizing the attention they require. To
this end, we desire input into the management tools and philosophies of any SGS File
System project.

Currently, file system administration is very tedious and labor intensive. Analyzing
behavior by the applications, (evaluating traces) is difficult and should be necessary
only on extremely rare occasions. Rather, the file system should make an effort to
inform sysadmins when a component is slow or stalled. Further, it should automatically
correct the situation if there are no negative consequences, or present the sysadmin with
options when a decision with negative implications should be made. Design for “lights
out” operation is Extremely Desired.

The file system should support common configuration tasks such as adding or deleting
disks, re-balancing data or metadata, or defragmentation online.

Further, there should be diagnostic tools whenever something seems amiss.

4.4.2 Integration with other Management Tools [HIGHLY DESIRED]
While this is not a strict requirement, it would be very useful if control, status and
management functions were able to integrate with a storage management suite. It is
also desirable that all storage devices, storage fabric, and storage software in the SGS

File Systems SOW April 25, 2001

–24–

File System be compliant of standards and emerging standards in this area (e.g., SES –
SGSI enclosure services and SNMP).

4.4.3 Dynamic tuning & reconfiguration [EXTREMELY DESIRED]
We anticipate that optimal performance of the SGS File System will require proper
settings of a number of site configurable parameters. For example, SGS File System
may provide parameters on how much caching is performed, where this caching is
performed, and under what conditions the caches are flushed. We require the capability
to adjust such parameters “on the fly” without taking the file system down. Tuning a
live system is vital; we should not have to unmount and stop the file systems, edit
configuration parameters, and then restart the file system.

Furthermore, we frequently need to add or remove devices. The file system should be
able to remain up during such activities.

Finally, the file system should be able to dynamically adjust for load balancing once the
devices within a file system are increased or decreased.

4.4.4 Diagnostic reporting [EXTREMELY DESIRED]
Usage statistics should be available on: (a) a per-client node basis; and (b) a per-logical
disk basis.

Per/client statistics that allow recognizing imbalance are important. For example, if a
logical disk becomes unavailable for some time, an imbalance may result when the
logical disk comes back online. It should be possible to determine the presence or
absence of these imbalances. At the lowest level would be something like nfsstat that
shows the number of calls. Better still would be rates, throughput, and outstanding
requests. This could be something like IO stat and a performance monitor. This could
be used to further fine tune nodes that provide different services. For example, nodes
performing a lot of transfers to/from storage may perform better with a different tuning.
Also, for dedicated runs and special cases, with the ability to tune on the fly we could
optimize the file system for that application.

4.4.5 Support for configuration management [EXTREMELY DESIRED]
The file system should either provide its own configuration management software, or
be a “good-citizen,” cooperating with an existing configuration software product. If the
product supplies its own, then information about past and present file system versions,
applied fixes and/or patches, as well as hardware levels down to the individual disk
information should be maintained. If the product does not supply its own configuration
management tool, we desire a modular design that could easily support a new
configuration management MIB.

4.4.6 Problem determination GUI [DESIRED]
A GUI that displays the major components of the file system as a diagram (including all
major components involved in the proper operation of data flow) that dynamically

File Systems SOW April 25, 2001

–25–

updates to show status and highlights problem areas should be provided. The diagram
would be updated in real time to reflect current usage and/or problems. Use of SNMP
traps and MIBS allowing integration with current network management software is
desirable.

4.4.7 User statistics reporting [EXTREMELY DESIRED]
Real time usage statistics should be available on: (a) a per-file basis; and (b) a per-
parallel job basis (all of the I/O associated with a given job). Additionally, bandwidth
and capacity usage statistics should be available on a per user/per project /per site basis
such that a charge back accounting system might be able to be implemented as a site
decision. Such usage should also be available on a trend analysis basis so that capacity
and bandwidth planning can be implemented on a per site basis.

4.4.8 Security management [EXTREMELY DESIRED]
There should be management tools to manage all aspects of security, including ACL
editor, logs, etc.

4.4.9 Improved Characterization and Retrieval of Files [DESIRED]
A hierarchical naming convention such as Unix is a weak tool for storing information
about files and their relationships. We desire additional characterization of the files
such as searchable descriptive information about their contents. Furthermore, we desire
additional control over how these files are retrieved; we work with various kinds of
workloads including use-once video streams (where if a packet is lost, there is no need
to resend it), high performance simulation applications which require sustained data
access rates; and lesser priority I/O such as the delivery of email and so forth. [Hen90]
[KK90] [McC96].

We are aware of several suitable technologies which involve additions at the VFS layer,
adding a file system meta database [Ols93], or adding classes of service (COS).
Multiple classes of service need to be supported based on characteristics such as
bandwidth (stripe width). COSs TBD.

4.4.10 Full documentation [EXTREMELY DESIRED]
There should be a full set of the usual system, operation, and user documentation.

4.4.11 Fault Tolerance, Reliability, Availability, Serviceability (RAS) [EXTREMELY DESIRED]
Most of the government’s super computing program bases its largest compute resources
around very large clusters of single or multi-processor-based nodes. The component count
in these machines is very, very large. Consequently, failures of individual components are
expected, and should be planned for in all designs and operational procedures.

It is unreasonable to expect that this is different with regard to the attached file systems.
For that reason, file system architectures should be able to tolerate many kinds of
component failure and dynamically adapt. Where architecture cannot automatically

File Systems SOW April 25, 2001

–26–

adapt, the design should allow for minimal disruption to the body of currently
executing tasks. For instance, a complete reboot of the IO system, or machine, due to a
lost message or failed link is unacceptable, when alternatives are available. There
should be no disruption of processes that do not use a failed resource.

We also require that any SGS File System effort should include a test or benchmark
that will measure fault tolerance and availability.

It is not necessary that the fault tolerance and availability be provided by classical
RAID, but the requirement should be met in some affordable manner.

It is expected that the reliability and availability of the SGS File System be directly
related to the fault and reliability model options used to configure the SGS File System
as well as the underlying hardware infrastructure on which the SGS File System is
implemented. By this we mean that various levels of fault tolerant and reliable
configurations of an SGS File System are possible, including fully fault tolerant and
reliable configurations as well as less than fully fault tolerant and reliable
configurations.

Fully fault tolerant and available system
configuration

Less than fully fault tolerant and
available system configuration

??All data are protected either through parity
based techniques, logging, mirroring or
other techniques, and

??all required communication paths between
various parts of the SGS File System are
fully redundant with dynamic route
adjustment upon failure, and

??all required subsystems have redundant fail
over infrastructure.

??It is not a requirement that the SGS File
System take on the entire responsibility of
providing this fully fault tolerant and
available capability. However, it is
required that it be possible to provide the
appropriate infrastructure such that the
SGS File System can be configured to
provide this fully fault tolerant and
available system environment.

?? A less than fully fault tolerant and
available system configuration should,
wherever possible, utilize quorum or
other techniques to provide a graceful
and consistent degradation of the SGS
File System service wherever possible.
As well, a coordinated recovery from
this degradation after problems have
been corrected should be available.

?? In a mixed availability configuration, a
user I/O job should be able to provide
hints as to the fault tolerance
requirement for an individual file such
that on file create, data blocks are
allocated to the configuration with the
appropriate levels of fault tolerance.

Table 8

4.4.12 Integration with Tertiary Storage [EXTREMELY DESIRED]
It is required to provide the standard XDSM DMAPI interface event and library system
for any SGS File System project [XDMS].

Integration with Archive means:
• The file system should support an XDMS (X/OPEN’s XDMS protocol)

DMAPI event and library system.

File Systems SOW April 25, 2001

–27–

• The file system should support intra-complex transparent access to the
archive.

The SGS File System is not expected to achieve the POSIX and MPI-IO
performance metrics itemized in sections 4.2.1-4.2.3 with files managed via
DMAPI.

The level of implementation for DMAPI should be such that enough meta-data
information is propagated to the HSM agent in order to allow full recovery in the event
of a catastrophic disaster. A complete implementation of the DMAPI dtime attribute, as
well as native support of the DMAPI opaque attributes is attractive.

4.4.13 Standard POSIX and MPI-IO [EXTREMELY DESIRED]
The semantics of the file system’s application programmer interface (API) needs to be
as standard, consistent and orthogonal as is reasonable, with minimal extensions from
standards. For example, there seems to be a significant effort on the part of system
implementers to add a plethora of options to the open call and control aspects of the
API. Then, too, options for one file system are not the same as available on another
though their effect may be similar.

The exact API specification should be one of the first deliverables of any SGS File
System project we embark on, and should be extensible to be able to take advantage of
future concepts if possible. Additionally, standard file system utilities like “ls,” “find,”
redirection, etc., should be supported in some manner that doesn’t require re-linking.

The file system in combination with the client software should offer the standard
POSIX and MPI-IO APIs.

The common parallel IO API in use within the high performance computing
environment today is MPI-IO. We require that the combined SGS File System and
client software provide the functionality that enables MPI-IO to take full advantage of
the parallel nature of the storage fabric and storage devices in a controlled manner. For
good advice about what file systems can do to support high-performance
implementations of MPI-IO see [TGL98].

If the file system requires additional information not found in the standard Posix or
MPI-IO API, the file system should utilize MPI Hints (as opposed to non-standard API
calls).

4.4.14 Special API semantics for increased performance [HIGHLY DESIRED]
If enforcement of POSIX atomicity semantics limits I/O performance, the file system
API may offer application programs the option of running in a special mode in which
those semantics are not enforced by the file system. In such a mode, as long as distinct
processes do not simultaneously write to the same allocation unit in a file, the result of
the file operations should be the same as if made standard POSIX semantics. Similarly,
either the file system should provide control over the data caches or qualify the mode of
operation with a proviso that only data written at the local client is reliable. A method
of switching between modes should be provided if control over potentially incoherent

File Systems SOW April 25, 2001

–28–

copies of the data is not possible. We are willing to accept that POSIX’s atomicity
semantics could, and perhaps should, be provided by software outside of the scope of
the file system itself, but we desire that this software layer be developed by anyone
providing the SGS File System solution. However, the operating system should provide
a fully compliant POSIX interface since the SGS File System should be supported as a
native file system. Additions to the POSIX interface that significantly enhance
performance are allowed (but discouraged, except insofar as they may be hidden from
the user by being underneath the MPI-IO interface). The use of “hints” from the user
that enhance performance but do not change the semantics of file system operations is
allowed.

4.4.15 Time to build a file system [EXTREMELY DESIRED]
Building (formatting to make usable) an ASCI size file system should be as fast as
possible. The time to build the file system should be some large percentage of the file
system size divided by the maximum sustained I/O bandwidth of the devices..

4.4.16 Backup/Recovery [EXTREMELY DESIRED]
The SGS File System (or portions thereof) should be able to be backed up and
recovered in a consistent, expedient manner. The file system should be able to be
integrated with third party backup packages including packages that utilize standards
based remote control protocols like NDMP. The bandwidth of said backups and
recoveries should only be limited by the backup infrastructure. Therefore, the
bottleneck for any transfer between the SGS File System and the backup infrastructure
should be the backup infrastructure itself.

4.4.17 Snapshot Capability [HIGHLY DESIRED -> EXTREMELY DESIRED]
A software snapshot capability should exist that provides a way to take a “consistent,
point in time backup” while minimizing the need for additional disk space. The
snapshot feature should take advantage of any hardware assist that a disk subsystem
may provide. It is desired that the capability for multiple snapshots to be maintained be
limited only by the amount of disk space for snapshots that a site may wish to allocate.
Additionally, it is desired that a user have online, read only access to those snapshots
where the users had access at the time of the snap. This will allow users to recover from
“oops” events (unintentional deletes, changes, etc.) without administrator intervention.

One such snapshot implementation was developed by Network Appliance to allow for
minimal overhead such that a copy of the file system metadata (at some sub-tree of the
directory hierarchy) is quickly taken pointing to the same data blocks as the active file
system’s metadata. When the active file system is changed, data blocks that are
normally garbage collected remain in use until that copy of the snapshot is eliminated at
a later time. Thus, the only overhead is that of the metadata and any changed data
blocks.

File Systems SOW April 25, 2001

–29–

4.4.18 Flow Control & Quality of I/O Service [HIGHLY DESIRED]
It is desirable that the SGS File System incorporates mechanisms to ensure buffered
components are not overrun. Furthermore, since not all jobs have the same priority, it is
desirable that the file system provides Quality of I/O Service capabilities. This could be
accomplished by a system-admin tool which permits an administrator to prioritize
(reserve a guaranteed portion of resources) a given entity. Possible entities include jobs,
processes, files, or activities associated with a given user. A modular tool design that
easily interfaces to OS and/or batch facilities to designate the entities is desired.

4.4.19 Benchmarks [EXTREMELY DESIRED]
It is expected that the Offeror will develop tests to ensure that performance and RAS
requirements are met. Such tests are valuable and give significant additional capability
to test and evaluate file systems. Any SGS File System should have a diverse set of
scalability benchmarks as part of the deliverables, mutually agreed between the Offeror
and the U.S. Government agencies. These scalability benchmarks should cover the
above areas. In particular, they should cover parallel access patterns: from one process
to many storage devices, from many processes to one file or storage device, and from
many processes to many storage devices. These benchmarks should test a variety of
diverse concurrent access patterns. Additionally, the benchmarks should be able to test
and demonstrate file system metadata performance and scalability.

4.5 Security

We need adequate measures to enforce our need-to-know orders, and adequate logging to
assess external and internal attempts to thwart such measures. We require fine-grain
access control mechanisms and auditing mechanisms to support a need-to-know sharing
and protection model, authorization mechanisms that will integrated with our current
authentication and security infrastructure, and data protection and integrity for
information in transit. Existing security-related technologies (e.g., Access Control Lists,
shared secret key systems ala Kerberos, public key systems ala Entrust, transport-based
data protection and security ala Ipsec) provide some aspects of a fine-grain need-to-know
file system. However, a number of issues still remain before an SGS File System can be
trusted to provide fine grain inter-site security with a possible “insider threat.”
Additionally, the security should support the idea of domains of control, so that the
individual sites within a multi-site SGS File System complex may have site specific
security. The following subsections address security related required and desired features
of the needed SGS File System.

4.5.1 Authentication [EXTREMELY DESIRED]
We require standard authentication techniques to minimize inappropriate access or
administrative actions. Since authentication mechanisms are likely to change over time,
access to authentication functions should be through an industry standard authentication
API such as Generic Security Services (GSS).

The authentication scheme employed should not conflict with other schemes that may
be present. For example, there should be no reliance on an obsolete version of Kerberos
that prohibits the usage of the up to date version of Kerberos for other packages.

File Systems SOW April 25, 2001

–30–

We desire a strong authentication scheme that in the best case extends all the way to the
storage device. ASCI currently employs Kerberos for authentication of host and user
credentials. In addition, the ASCI sites have recently deployed an Entrust Public Key
Infrastructure (PKI) that could provide the basis for authentication. Support for an
authentication mechanism based upon Kerberos or PKI should be present at initial
delivery. If a PKI is used for authentication, the authentication software should
interface to the PKI through the Lightweight Directory Access Protocol to a directory
containing X.509v3 certificates, so that any compliant PKI (including Entrust) can be
used.

4.5.2 Authorization - [EXTREMELY DESIRED]
The file system should provide support for Access Control Lists (ACLs) as the file and
directory access protection mechanism and the authorization mechanism for file system
management. The ACL mechanism should include support for multiple administrative
domains, file and directory inheritance, explicit allow controls for I/O operations and
management and the necessary tools for the management of ACLs. The management of
ACLs should be consistent for any object in the global name space regardless of client
location. The ACL entries should be able to specify permissions for the following-
owner of object, group owner of the object, user(s), group(s) and others within the
administrative domain, user(s), group(s) and others in external trusted administrative
domains and unknown entities. If PKI is the authentication mechanism, then the file
system should support an extensible authorization mechanism to enable the use of
digitally signed authorization certificates for authorization. Since no standards exist, the
ASCI sites will work with the Offeror to develop specifications for such certificates

4.5.3 Content-based Authorization - [HIGHLY DESIRED]
It is highly desirable for the file system to provide support for an extensible
authorization mechanism that would enable support for content-based authorization and
a site-defined policy engine. This would be an additional authorization check to that
specified in 4.5.2. The site-defined policy engine would be invoked by the file server
and would be provided with the requested operation, the requester’s identity and
credentials, the object and metadata, some of which would be site or object specific,
associated with the object. The capability to perform a content-based authorization
check should be selectable on a per-object basis, possibly via an ACL control.

As a site-defined policy engine would need to store data out of band but related to
normal file system attributes, some mechanism that is capable of extending the normal
system maintained attributes should be included. Such a system would, necessarily, not
normally be able to make use of these attributes, so they would be maintained as
opaque, probably keyed, data. In addition to protected, system-level, opaque attributes,
it could be useful to maintain a similar mechanism for the user. This would allow the
file owner to supply hints and option selection to the site-defined policy mechanism. As
with other file object attributes (e.g., ACLs, group ownership), the file system would
support an inheritance mechanism to associate user-level metadata or attributes with the
newly created objects. The file system would provide a simple opaque object storage,
retrieval and deletion capability to support management of the user-level metadata.

File Systems SOW April 25, 2001

–31–

4.5.4 Logging and auditing [EXTREMELY DESIRED]
The file system should provide the necessary tools to support vulnerability assessments
and be able to reconstruct past events. For example, we require the ability to log and
audit granted access, access denial and other security-related events. The logging and
auditing capability should be tunable so that only the requested events are logged. It is
understood that auditing/logging activities can impact performance. We desire minimal
performance impact; a scalable logging design is desired.

4.5.5 Encryption [DESIRED]
Data encryption can provide protection against snooping for data while in transit or at
rest. One mechanism for controlling access to data is to encrypt it in a key that is only
accessible by the users who are authorized for that data. If encryption is implemented
for data privacy, it should meet, at a minimum, the FIPS 140-1 Level 1 requirements
and be submitted to NIST for FIPS certification. The FIPS-approved encryption
algorithms are Triple-DES and AES (Rijndael). If encryption is implemented for
authorization, the file encryption capability should be integrated with a PKI-based
authentication mechanism (as described in Section 4.5.1). Each file should be
encrypted with a unique symmetric (Triple-DES or AES) key, and the symmetric key
should be encrypted using users’ pubic keys, so that only users who are authorized to
read a file are able to decrypt the corresponding file encryption key (and hence the file)
using their private key. File encryption should take place in the client, so that the data
is protected in transmission, storage, and at rest. Also, there should be a way for
individual sites to plug in the encryption scheme of their choice.

If encryption is fundamental to the authorization scheme, there should be no means of
disabling the use of encryption. If encryption is implemented for data privacy, the
decision to encrypt can be mandatory or discretionary. The file system administrator
can implement a mandatory decision to encrypt all data that can not be overridden by
the user. However, if the administrator chooses to leave the decision to the user, the
default mode of transfers shall be without encryption. Product performance is critical
and the performance acceptance phase should be run with and without encryption
enabled, unless it is required to meet the authorization requirement.

4. 5.6 Deciding what can be trusted [EXTREMELY DESIRED]
Shared file systems that are accessed by many clients present special security concerns.
In particular, rogue nodes on a common SAN could violate some security schemes. We
are willing to consider the kernel and persistent daemons running as root as trusted for
their resident machine. A machine is a self-contained unit in which internal message
traffic cannot easily be snooped. The file system should support a mechanism for
limiting access to only the set of trusted machines and provide an administrative
mechanism for immediately disabling access to any trusted machine as needed.
Additionally, the file system should support security mechanisms that extend down to
the storage device to mitigate risk associated with a trusted machine.

File Systems SOW April 25, 2001

–32–

References

[Hen90] D. Hendricks, “A Filesystem for Software Development”, in Proc. USENIX

Summer Conference, pp. 333-40, Anaheim, CA, June 1990.

[Hen94] John L. Hennessy and David A. Patterson, “Computer Architecture: A

Quantitative Approach”, second ed., San Francisco : Morgan Kaufmann Publishers,
1994.

[KK90] D. Korn and E. Krell, “A New Dimension for the Unix® File System.” Software

Practice and Experience 20(S1), pp. 19-34, June 1990.

[Kle86] S. Kleiman, “Vnodes: An Architecture for Multiple File System Types in Sun

UNIX”, in Proc. USENIX Summer Conference, pp. 238-24, Atlanta GA, June
1986.

[McC96] Michael McClennen and Stuart Sechrest, “Getting More Information into File

Names”, Technical report CSE-TR-279-96, University of Michigan, January, 1996.

[Mog86] J. C. Mogul, “Representing Information about Files.” Technical report STAN-

CS-86-1103, Stanford University, March, 1986.

[MPI97] The Message Passing Interface Forum, “MPI-2: Extensions to the Message-

Passing Interface”, July, 1997.

[Ols93] M. Olson, “The Design and Implementation of the Inversion File System”, in Proc.

USENIX Winter Conference, pp. 1-14, San Diego CA, January 1993.

[Pik90] R. Pike, D. Presotto, K. Thompson, and H. Trickey, “Plan 9 from Bell Labs.” In

Proc. UK UUG, 1990.

[TGL98] R. Thakur, W. Gropp, and E. Lusk, “On Implementing MPI-IO Portably and with

High Performance.” Proc. Sixth Workshop in Input/Output in Parallel and
Distributed Systems, May 1999, <http://www.mcs.anl.gov/~thankur/papers/mpio-
impl.ps.gz>.

[XDMS] DMAPI Specification, <http://www.opengroup.org/pubs/catalog/c429.htm>

File Systems SOW April 25, 2001

–33–

Glossary
Some of these terms utilize info from the Free Online Dictionary of Computing
http://www.fodoc.org, the GNU Project http://www.gnu.org/philosophy/free-sw.html, and
other DOE webpages.

API Application Programming Interface – The functions and prototypes that a

given software layer can program to.
Archive See “Tertiary Storage.”
ASCI Accelerated Strategic Computing Initiative – A U.S. Government funded

program which aims to make predictive simulation possible; stimulate the
U.S. computer manufacturing industry to create more powerful, high-end
supercomputing capability required by these applications; create a
computational infrastructure and operating environment that makes these
capabilities accessible and usable.

Backup Duplicating a file for safekeeping. Many times, the backup is kept at a
remote location to provide catastrophe (fire, earthquake, …) protection.

Blue-Mountain The initial three machines purchased under the ASCI program were Red (a
large Intel Teraflops at Sandia National Labs), Blue-Mountain (a large
cluster of SGI Origin systems at Los Alamos National Lab), and Blue-Pacific
(a large IBM SP2 at Lawrence Livermore National Lab).

Blue-Pacific The initial three machines purchased under the ASCI program were Red (a
large Intel Teraflops at Sandia National Labs), Blue-Mountain (a large
cluster of SGI Origin systems at Los Alamos National Lab), and Blue-Pacific
(a large IBM SP2 at Lawrence Livermore National Lab).

Copy Left The rule that when redistributing the program, you cannot add restrictions to
deny other people certain freedoms (see Free Software). This rule does not
conflict with the central freedoms; rather it protects them.

CRADA Cooperative Research and Development Agreements -- A formal agreement
involving Lawrence Livermore and an industrial partner(s), in which both
parties provide personnel, services, facilities, or equipment for the conduct of
specified research and development. A basic purpose of CRADAs is to
provide U.S. economic benefit. CRADAs differ from PathForwards in that
they are typically more risky and have a further time horizon for product.
For additional info click on
<http:www.llnl.gov/IPandC/Industry/crada.html> also PathForward.

DAFS A file system being developed by a consortia lead by Network Appliances
and characterized by RDMA data movement.

DFS Distributed File System: A file system which may be mounted by multiple
clients distributed over a computer network. An example of a DFS is NFS.
Note: In this document, we use DFS generically for any distributed file
system in this document – any reference to the TransArc product with the
same name will be clearly specified.

DisCom2 Distance and Distributed Computing and Communication: DisCom2 is an
ASCI project intended to deliver key computing and communications
technologies to efficiently integrate distributed resources with high-end
computing resources at a distance.

DLM Distributed Lock Manager: A federated locking mechanism used to
synchronize disjoint items or events.

File Systems SOW April 25, 2001

–34–

DMF DMF is a project initiated at the three labs to address shareable files between
sites. It is intended to be a comprehensive solution for fast, portable, serial
and parallel I/O providing data share-ability and application & tool
interoperability for scientific data.

DOE The United States Department of Energy (http://www.doe.gov).
DOD The United States Department of Defense (http://www.defenselink.mil).
DP Defense Programs – Activities in support of the nations national security and

national defense.
DP-10 Deputy Assistant Secretary for Research, Development, and Simulation –

LANL, LLNL, and Sandia are under the umbrella of the Department of
Energy. The work proposed in this paper would be funded by the Defense
Program (DP) of the DOE. The Defense Program is divided up into several
subprograms (e.g., DP-10, DP-20, DP-30, DP-40, and DP-50). This work
falls into DP-10 which is “Strategic Computing and Simulation.”

DP-14 Office for Advanced Simulation & Computing – The subsection of DP-10
for which file system R&D falls into.

Free Software

“Free software,” is free in the sense of liberty, not price. To understand the
concept, you should think of “free speech,” not “free beer.” “Free software”
refers to the users’ freedom to run, copy, distribute, study, change and
improve the software. More precisely, it refers to four kinds of freedom, for
the users of the software: (1) The freedom to run the program, for any
purpose; (2) The freedom to study how the program works, and adapt it to
your needs; (3) The freedom to redistribute copies so you can help your
neighbor ; and (4) The freedom to improve the program, and release your
improvements to the public, so that the whole community benefits. Access to
the source code is a precondition for this.
Also see the less strict term “open source.”

FY Fiscal Year – The US government uses the fiscal year October 1 through
September 30th. For example, FY01 is October 1, 2000 through September
30, 2001.

GFS Global File System: (Not to be confused with Univ. of Minnesota’s GFS): A
file system that provides a single unified name space across multiple
(possibly heterogeneous) platforms.

GPL General Public License -- A legal software license arrangement developed by
GNU to promote open software. The licenses for most software are designed
to prevent users from sharing or changing it. By contrast, the GNU General
Public License is intended to guarantee the freedom to share and change free
software - to make sure the software is free for all its users. The GPL is
designed to make sure that anyone can distribute copies of free software (and
charge for this service if they wish); that they receive source code or can get
it if they want; that they can change the software or use pieces of it in new
free programs; and that they know they can do these things. The GPL forbids
anyone to deny others these rights or to ask them to surrender the rights.
These restrictions translate to certain responsibilities for those who distribute
copies of the software or modify it.

HDF5 A low-level I/O API and file format. Provides a full-featured I/O system
enabling data subsetting, portability, etc. (See http://hdf.ncsa.uiuc.edu)

HPC High Performance Computing – The computing market segment concerned
with the most demanding computational tasks and very high-end equipment.

File Systems SOW April 25, 2001

–35–

HSM Hierarchical Storage Manager -- Software which automatically migrates files
between secondary storage and tertiary storage as needed such that the user
is unaware of the division between secondary storage and tertiary storage.

IP Intellectual Property -- The ownership of ideas and control over the tangible
or virtual representation of those ideas. Use of another person’s intellectual
property may or may not involve royalty payments or permission, but should
always include proper credit to the source.

LANL Los Alamos National Laboratory – A large DOE R&D facility in Los
Alamos, New Mexico (http://www.lanl.gov).

LLNL Lawrence Livermore National Laboratory – A large DOE R&D facility in
Livermore, California (http://www.llnl.gov).

LVM Logical Volume Manager – Software which has access to a number of
individual devices and exports a collective view of the devices. For example,
an LVM could make ten 1GB disks appear as one 10GB disk to upper
software layers.

MIB Management Information Base – A database of objects that can be monitored
by a network management system. Both SNMP and RMON use standardized
MIB formats that allows any SNMP and RMON tools to monitor any device
defined by a MIB.

MPI Message Passing Interface – One of the two most popular ways to write
cooperative parallel applications at the ASCI labs (the other being OpenMP),
the Message Passing Interface specifies an interface standard for the message
passing paradigm of parallel applications. (See http://www.mpi-forum.org).

MPI-IO The most recent version of the MPI standard (MPI 2.0) includes interfaces
for performing parallel I/O. These interfaces are sometimes referred to as
MPI-IO.

NAP Network Attached Peripheral: Individual NAS components.
NAS Network Attached Storage: Devices that provide storage services on an

internet or intranet. Today, NAS devices typically provide NFS or CIFS
services.

NASD Network Attached Secure Disks: A NAP with added security features.
NNSA National Nuclear Security Administration – A branch of the Department of

Energy tasked to enhance United States national security through the military
application of nuclear energy, to provide the United States Navy with safe,
militarily effective nuclear propulsion plants and to ensure the safe and
reliable operation of those plants, and to promote international nuclear safety
and nonproliferation.

NTK Need to Know -- In the context of security, information that has been
deemed to be of a sensitive nature should be secured such that only those
people/applications with a “need to know” may access them. For instance, it
may be proper for an employee and his physician to have access to medical
records, but improper for others. Need to know implies three components:
access control which is mechanisms to tag the data as restricted access;
authentication which is mechanisms to confirm who is requesting the
information, authorization which is mechanisms to enforce authentication
and identification.

Open Source Software products provided in such a way that “you can look at the source
code.” See also the more strict term “Free Software.”

OpenMP A compiler-based standard for coordinated parallel applications. OpenMP
consists of a number of compiler directives and pragmas to perform threads-
based parallelization. See also MPI.

File Systems SOW April 25, 2001

–36–

OS Operating System
PathForward Funding delivered to industry to accelerate possible commercial solutions for

ASCI needs. There are software PathForwards and hardware PathForwards.
PKI Public Key Infrastructure – a system of digital certificates, Certificate

Authorities, and other registration authorities that verify and authenticate the
validity of each party involved in an Internet transaction. PKIs are currently
evolving and there is no single PKI nor even a single agreed-upon standard
for setting up a PKI. However, nearly everyone agrees that reliable PKIs are
necessary before electronic commerce can become widespread. A PKI is
also called a trust hierarchy.

POSIX Portable Operating Systems Interface – An international standard developed
by the IEEE and adopted by the ISO. Provides UNIX users with an
international harmonized standard for operating system interfaces.

PSE Problem Solving Environment -- An ASCI Level 3 programmatic effort to
Support the rapid development of predictive simulation codes adapted for the
efficient use of very-large-scale parallel computer; and to ensure that the
power of the application/platform combination can be readily applied by
scientists to the challenges of stockpile stewardship and management. See
webpage at
http://www.llnl.gov/asci/pse/

Purple The ‘working name’ of the next ASCI machine to be sited at LLNL.

Q A large Compaq cluster being delivered to Los Alamos National Lab.

R&D Research and development

RAID Redundant Array of Independent Disks – striping of a stream of data onto
multiple disks usually with some kind of hardware generated parity stripe.

RAIT Redundant Array of Independent Tapes – striping of a stream of data onto
multiple tape drives usually with some kind of hardware generated parity
stripe.

RAS Reliability, Availability, Serviceability – The three components that define
how robust a file system is. Reliability is concerned with how often failures
occur. Availability is concerned with how often the file system is unavailable
for use. Serviceability is concerned with how easily/quickly problems are
resolved.

RDMA Remote Direct Memory Access – Anything that provides a the ability to
copy from one user space to a different user space (usually on a different
machine node) directly without the usual software fragmentation , software
reassembly, and kernel-to-userspace copies.

Red The initial three machines purchased under the ASCI program were Red (a
large Intel Teraflops at Sandia National Labs), Blue-Mountain (a large
cluster of SGI Origin systems at Los Alamos National Lab), and Blue-Pacific
(a large IBM SP2 at Lawrence Livermore National Lab).

RedStorm A large Compaq cluster being collaboratively designed and managed by
Sandia National Labs and Celera Genomics Inc. See
http://www.energy.gov/HQPress/releases01/janpr/pr01022.htm

RFI Request For Information: A call for information. In contrast to an RFP, an
RFI does not require a detailed proposal. That is, it does not generally
require a thorough itemized project plan, a thorough itemized funding plan,
nor any documentation on anticipated contractual terms and conditions.

File Systems SOW April 25, 2001

–37–

RFP Request For Proposal: A formal request to potential suppliers for a proposed
solution, including a technical scope and pricing. RFPs are used for both
purchasing a sophisticated item and for funding directed R&D. See also
RFI.

SAN Storage Area Networks. A dedicated network wherein general host(s) access
either NAS or NAPs.

Also System Area Network: Network-based I/O architectures that provide
many of the capabilities of a computer-bus including processor, memory, and
I/O device access. An example of a System Area Network is InfiniBand.
(See http://www.infinibandta.org)

SCCD Scientific Computing and Communications Department – The
supercomputer center at LLNL.

SGS Scalable , Global, Secure – the defining characteristics of the file system we
desire.

SDM Scientific Data Management. SDM is a subproject with the VIEWs project to
develop an environment that allows scientists to store, retrieve, search and
reduce data within the natural context of their work. This framework
integrates scientific data models, commercial databases, mass storage
systems, networking and computing infrastructure, and intelligent post-
processing to provide assistance in managing the complexity and scale of
ASCI data.

Shim A small piece of data inserted in order to achieve a desired memory
alignment or other addressing property. For example, the PDP-11 Unix
linker, in split I&D (instructions and data) mode, inserts a two-byte shim at
location 0 in data space so that no data object will have an address of 0 (and
be confused with the C null pointer).

SNL Sandia National Laboratory – A large DOE R&D facility split between two
physical sites: Albuquerque New Mexico, and Livermore, California
(http://www.sandia.gov).

SOW Statement of Work -- A formal description of an agreed upon task.

Tertiary Storage The lowest strata in the Von Neumann memory hierarchy model
characterized by the largest (most cost effective) capacities and the slowest
access. Traditionally, tertiary storage has been comprised of tapes and tape
robotics, but future systems may employ disk drives as disks become larger
and cheaper.

TRC Technical Review Committee – The team of computer scientists who will be
reviewing the proposals.

Tri-lab Refers to the three U.S. national security laboratories: Lawrence Livermore
National Laboratory, Los Alamos National Laboratory, and Sandia National
Laboratories.

VIEWS Visual Interactive Environment for Weapons Simulation: An ASCI project
responsible for the development of a software infrastructure which enables
the interaction and visualization of ASCI scale datasets. VIEWs software
will permit seeing and understanding the results of ASCI codes.

WAN Wide Area Network: Any network technology that spans large geographic
distances. ASCI WANs should be able to span Northern California and New
Mexico with high-speed links, and possibly other sites with lower speed
links. (Contrast with Local Area Network and Metropolitan Area Network.)

White A 12 Tflop IBM SP at LLNL. See
<http://www.llnl.gov/asci/news/white_news.html>

File Systems SOW April 25, 2001

–38–

